Name:_____

Date:

Class/Home worksheet: Alg2H Factoring (book chapter 5, page 519 and beyond)

Factoring is the reverse of multiplying.

Factoring an expression means to write it as an equivalent expression that is a product.

Common factor:

$$3x^2 + 12 =$$

$$3 \cdot (x^2 + 3 \cdot 4 =$$

Common factor:

$$7x^3 + 14x^2 =$$

Common factor:

$$5x^3 - 20x^3 =$$

Common factor:

$$12x^2y - 20x^3y =$$

Common factor:

$$10a^4 + 15a^2 - 25a =$$

Common factor:

$$9x^3y^2 - 6x^2y^3 + 3x^3y^3 =$$

$$3x^2y^2(3x-2y+xy)$$

Take a common factor if possible. It will simplify things!

Difference of Squares (P. 221)

$$A^2 - B^2 = (A + B) \cdot (A - B)$$

Factor:

$$x^2 - 25 = \left(\chi + 5\right) \left(x - 5\right)$$

Factor:

$$9x^{2} - 16y^{2} = (3x^{4}y)(3x - 4y)$$

Factor:

$$\frac{1}{25} - x^2 =$$

$$\left(\frac{1}{5} - x\right) \left(\frac{1}{5} + x\right)$$

Factor (challenge):

$$(x^{4}-1)(x^{4}+1) = (x^{2}-1)(x^{4}+1)(x^{4}+1) = (x^{4}-1)(x^{4}+1)(x^{4}+1) = (x^{4}-1)(x^{4}+1)(x^{4}+1)(x^{4}+1) = (x^{4}-1)(x^{4}+1)(x^{4}+1)(x^{4}+1)(x^{4}+1) = (x^{4}-1)(x^{4}+1)(x^$$

Perfect Squares (P. 220)

$$A^{2} + 2AB + B^{2} = (A + B)^{2}$$

 $A^{2} - 2AB + B^{2} = (A - B)^{2}$

Factor:

$$x^2 + 10x + 25 =$$

$$\left(\chi \leftarrow \mathcal{I}\right)^2$$

Factor:

$$x^2 - 14x + 49 =$$

$$\left(\begin{array}{c} X - 7 \end{array} \right)^{2}$$

Factor (hint: rearrange):

$$16y^{2} + 49 + 56y =$$

$$16y^{2} + 56y + 49 =$$

$$= (4y + 7)^{2}$$

Factor:

$$72xy + 16x^{2} + 81y^{2} =$$

$$[6x^{2} + 72xy + 91y^{2}]$$

$$[4x^{2} + 94]^{2}$$

Factoring trinomials MATH style

(The common method in Kehillah school!)

Assume a trinomial of the form

$$aX^2 + bX + c$$

Create the following table following the directions below it:

M	A	T	Н
$a \cdot c \cdot X^2$	$b \cdot X$	Try the various factors of $a \cdot c$ that sum up to b	☺

- 1. Put under M (Multiply) the product $a \cdot c \cdot X^2$
- 2. Put under A (Add) the value of $b \cdot X$
- 3. Under T (Tries), put the various factor-pairs of the result in M, and try to see if their sum adds up to A.
- 4. When you find an appropriate pair, mark a smiley face in H (Happy)!
- 5. Rewrite the trinomial, by writing the middle term as the sum of two terms, and factor by grouping appropriate terms.

Examples:

I.
$$3x^2 + 8x + 4$$

M	A	T	Н
12 x2	8 X	3,4 612	V:

$$3x^{2} + 6x + 2x + 4$$

= $3x(x+2) + 2(x+2) = (3x+2)(x+2)$

II.
$$2x^2 + x - 15$$

	M	A	T	H	
	-30x2	1.x	-6,5 6x-5x	V.	
	2x2+	6x-5x-15	= 2x(x+3)	-5(x+3)=	(2x-5)(x-3)
If I	the: 2x-	LX + 6X-11=	x (2x-r) + 3((2X-5) = (X+3)	(2X-1) V.
- /	III. $x^2 - 2x - 2$				

M	A	T	Н	
-24.x2	-JX	-12,2 ,6,-9 -6,4		
x = 6X -	+4x-24=	x(x-6)+4(x	r-6)=(x+4)(x	-6

Let's try in the case of binomial (though we know the answer already!)

IV.
$$4x^2 - 9 = 4x^2 + 0x - 9$$

M	A	T	Н	
-36x2	0	6,-6	✓	
4x ² +6	x-6x-9=	2x(2X+3)-	3×(2×+3) = (2	X-3) (2X-13)

V.
$$-2x^2 - x + 6$$

M	A	T	Н
-12 x2	~ X	-62 -43	U.

$$-2x^{2}-4x+3x+6=-2x(x+2)+3(x+2)=[3-2x)(x+2)$$

From the book, Page 223

(30)
$$12a^2 + 36a + 27 =$$

$$3(4a^2 + 1)a + 9$$

$$43(2a + 3)^{2}$$

$$(38) 9x^2 - 25 =$$

Factor:

Factor:

(46) (tricky: Don't stop in the middle)

$$4xy^{4} - 4xz^{4} =$$

$$4x \left(y^{4} - z^{4} \right) =$$

$$4x \left(y^{2} - z^{2} \right) \left(y^{2} + z^{2} \right) =$$

$$4x \left(y^{2} - z^{2} \right) \left(y^{2} + z^{2} \right) =$$

$$4x \left(y^{2} - z^{2} \right) \left(y^{2} + z^{2} \right)$$

$$x^{2} + 9x + 20 =$$

$$M A T$$

$$20x^{2} | 9x | 4,5$$

$$x^{2} + 4x + 5x + 20 =$$

$$= x(x+4) + 5(x+4) = (x+5)(x-4)$$

Factor:

$$4x^{2}-3+4x = 4x^{2}+9x-3$$

$$M | A | T$$

$$12x^{2} | 4x | -6, 2$$

$$= 4x^{2}+2x-6x-3 =$$

$$= 2x(2x+1)-3(2x+1) =$$

$$(2x+1)^{2}$$

 $6x^2 + 17x + 7 =$ MA

$$\frac{MA}{42x^{2}} \frac{7}{17x} \frac{7}{14,3}$$

$$6x^{2} + 3x + (4x + 7)^{2}$$

$$3x(2x + 1) + 7(2x + 1)^{2}$$

$$(3x + 7)(2x + 1)$$

Two more items for factoring: Grouping and Cubes

