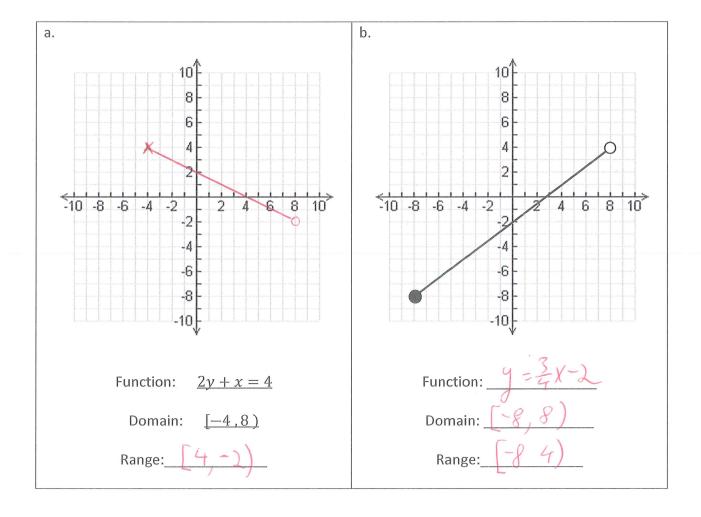
Name:	

Block:____


Quiz: Unit4. Systems of equations.

There are $\underline{7}$ questions in this quiz, each of equal value. Standard time for the quiz is $\underline{30}$ minutes . Four operations calculator is allowed.

Question 1:

For each of the following, complete the missing elements as needed (including the graph).

Question 2:

a. Solve algebraically:

$$\begin{cases} 3x + 2y = 10 \\ x + y = 3 \end{cases}$$

3x+6-2x=10 1x-4-3y=-1cleck: 1x-2=10

b. Solve algebraically:

$$\begin{cases} 3x + 2y = 10 \\ 6x + 4y = 20 \end{cases}$$

Infinite many solutions.

Question 3:

a. Solve:

$$\begin{cases} 2x + 3y = 10 \\ 4x + 6y = 3 \end{cases}$$

$$= \begin{cases} 4x - 6y = 26 \\ 4x - 6y = 3 \end{cases}$$

b. Solve:

$$\begin{cases} 2x = 10 - 3y \\ 4x + 2y = 4 \end{cases}$$

$$2x = 2x + 3y = 10$$

$$\begin{cases} 4x + 6y = 10 \\ 6x + 4y = 9 \end{cases}$$

Clech:

Question 4:

a. Given the line x + 2y = 14, find the perpendicular line that goes through the point (0,2).

$$2y = 14 - X \qquad m = -\frac{1}{2}$$

$$y = -\frac{1}{2}X + 7 \qquad m_1 = 2$$

$$(0, 2)$$

$$y = 2X + 2$$

b. Find the intersection point of these two lines.

$$\begin{cases} y = 2x + \lambda \\ y = -\frac{1}{2}x + 7 \end{cases} \Rightarrow 2x + \lambda = -\frac{1}{2}x + 7$$

$$2\frac{1}{2}x = 5 \Rightarrow x = \lambda \qquad \text{(Leech)}$$

$$6 = \frac{1}{2} \cdot 2 + \lambda$$

$$6 = \frac{1}{2} \cdot 2 + 7$$

Question 5:

a) Word problem I

The freshmen class at Kehillah is having a fundraiser. On the first day, they sold 6 'we carry your backpack' packages and 4 'we bring you lunch' packages, for a total of \$80. On the second day, after being featured on the announcements, they sold 10 of each, for a total of \$110. How much each package costs?

buckpack
$$6 \cdot X + 4y = 80$$

buckpack $5 \cdot X + 4y = 80$

buckpack $5 \cdot X + 4y = 80$

canch

 $10X + 10y = 150$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 15 \rightarrow y = 15 - x$
 $3 \cdot X + 4y = 1$

b) word problem II

Rowing up the river, the crew took 1.5 hours to cover the distance from the lake to the bridge. Rowing down stream, the crew took only 1 hour to cover the same distance. If the distance is 12Miles, how fast is the crew rowing?

Louis
$$\sqrt{r} \cdot (r - r) = 1$$

 $\sqrt{r} \cdot (r - r) = 1$
 $\sqrt{r} \cdot (r - r) = 1$

Question 6:

a) Mixtures: You have 50 ounces of a 25% saline solution (a mixture of water and salt). How many ounces of a 10% saline solution must you add to make a new solution that is 15% saline?

(Hint 1: Make a table and solve)

(Hint 2: https:/	tinyurl com	/z-mixture-vid	eo)
(111111 Z. 11LLP3./	/ tilly ullicolli	/ Z-IIIIX LUI E-VIU	

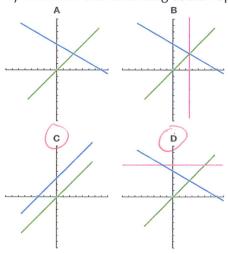
Us.	ure-video)	salt	
50	25%	12.5	Y67
X	10%	0.(X	10
(50-x)	15%	0.15 (50+X)	

$$12.5 \pm 0.1 X = 0.15(50 + X)$$

$$12.5 \pm 0.1 X = 75 + 1.5 X$$

$$50 = 0.5 X$$

$$100 = X (6.6)$$

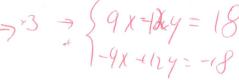

b) Mixtures: 9 lbs. of mixed nuts containing 55% peanuts were mixed with 6 lbs. of another kind of mixed nuts that contain 40% peanuts. What percent of the new mixture is peanuts?

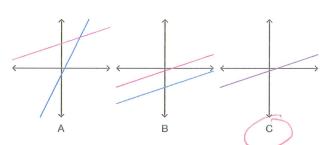
165

$$9.0.55 = 4.95$$
 $6.0.9 = 2.4$
 $7.35 = 0.99 = 49/6$

Question 7:

a) Which of the following could represent a system of equations with no solutions?




@ > Parallel lines

@ 3 equations, inconsistent

b) Which graph shows the solution set for this system of equations?

$$\begin{cases} 3x - 4y = 6 \\ -9x + 12y = -18 \end{cases}$$

c) The graphs of which set of equations will never intersect?

i.
$$3x + y = 6$$
 and $3x - y = 6$

ii.
$$x + 2y = 5$$
 and $x + 2y = 7$

iii.
$$2x - y = 4$$
 and $2x - 2y = 4$

$$3x+y=6$$
 $(y=0)$ $(y=0)$ $(y=0)$ $(y=0)$

$$X+Ly=f$$

 $X+Ly=f$
 $0=-1$ \times in cosistent
 $0=-1$ \times oblite.

$$2x-y=9$$
 $y=0$ $y=0$ $y=0$ $y=1$

d) Use Cramer's rule to solve the following equations:

$$\begin{cases} 1.2x - 3.2y = 6 \\ 1.3x + \frac{1}{3}y = -18 \end{cases}$$

Carmer's rule:

$$\begin{cases} aX + bY = c \\ dX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{af - cd}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{af - cd}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{af - cd}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{af - cd}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{af - cd}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{af - cd}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{af - cd}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{af - cd}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{af - cd}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{af - cd}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{af - cd}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{af - cd}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{ce - bf}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{ce - bf}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{ce - bf}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{ce - bf}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} , \quad Y = \frac{ce - bf}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} \qquad X = \frac{ce - bf}{ae - bd}$$

$$\begin{cases} AX + eY = f \\ AX + eY = f \end{cases} \qquad X = \frac{ce - bf}{ae - bd} \qquad X = \frac{c$$

e) given the following definitions:

$$f(x) = 4 - 2x$$
 , $g(x) = x - 3$

Find:

i)
$$g(f)(1) = g(\lambda) = -1$$

ii) $f(g(x)) = f(\chi - 3) = 4 - \chi + 6 = 10 - \chi$
iii) $f(g(2)) = f(-1) = 4 - \chi - \chi = 6$

iv)
$$g(f(2)) = g(0) = 3$$

=== End ====